Nearest Neighbour

Here is our 2D dataset, with 3 different classes

Each datapoint has some features and a class label

Given a new datapoint, how can we determine its class?

Find its "Nearest Neighbour" in the feature space

Computing "similarity" between two points

 $c^2 = a^2 + b^2$ i.e Pythagoras' theorem

 $c^2 = a^2 + b^2$

$$c^{2} = a^{2} + b^{2}$$

 $c = \sqrt{a^{2} + b^{2}}$

$$c^{2} = a^{2} + b^{2}$$

$$c = \sqrt{a^{2} + b^{2}}$$

$$c = \sqrt{(I_{1} - I_{2})^{2} + (w_{1} - w_{2})^{2}}$$

$$c^{2} = a^{2} + b^{2}$$

$$c = \sqrt{a^{2} + b^{2}}$$

$$c = \sqrt{(l_{1} - l_{2})^{2} + (w_{1} - w_{2})^{2}}$$

In R: p1 <- c(0, 0) p2 <- c(1, 1) distance <- sqrt(sum((p1-p2)^2))

Choose the closest point

Choose the closest point

Choose the closest point

Find its "Nearest Neighbour" in the feature space

"Nearest Neighbour" in the feature space

Nearest Neighbour Algorithm

Given a test point x

Compute the distance between **x** and every other datapoint

The class of x is set as the same as the closest datapoint

Again our 2D dataset

Let's try a different test point

Here is it's neighbour

Resulting Nearest Neighbour classification

For every point in the space we colour it with the class of the datapoint it is closest to.

Resulting Nearest Neighbour classification

For every point in the space we colour it with the class of the datapoint it is closest to.

Resulting Nearest Neighbour classification

For every point in the space we colour it with the class of the datapoint it is closest to.

Practical example

2_nearest_neighbour.R